Cambridge International AS \& A Level

CANDIDATE NAME

\square CANDIDATE NUMBER \square

CHEMISTRY

Paper 3 Advanced Practical Skills 2

You must answer on the question paper.
You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working, use appropriate units and use an appropriate number of significant figures.
- Give details of the practical session and laboratory, where appropriate, in the boxes provided.

INFORMATION

- The total mark for this paper is 40 .
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Notes for use in qualitative analysis are provided in the question paper.

For Examiner's Use	
1	
2	
3	
Total	

This document has 12 pages. Blank pages are indicated.

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 FB 1 is a solution of hydrated sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \times \mathrm{H}_{2} \mathrm{O}$, where x is an integer. You will determine the value of x in this compound by a titration method.

You will add FB 1 to a known volume and concentration of hydrochloric acid, FB 2. The hydrochloric acid is in excess. You will then titrate the remaining acid with aqueous sodium hydroxide, FB 3.

FB 1 is a solution containing $37.5 \mathrm{gdm}^{-3}$ hydrated sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{XH}_{2} \mathrm{O}$.
FB 2 is $0.200 \mathrm{moldm}^{-3}$ hydrochloric acid, HCl .
FB 3 is $0.100 \mathrm{moldm}^{-3}$ sodium hydroxide, NaOH .
bromophenol blue indicator

(a) Method

- Fill the burette with FB 3.
- For each titration:

Use the $25 \mathrm{~cm}^{3}$ pipette to place $25.0 \mathrm{~cm}^{3}$ of FB 2 into a conical flask. Use the $10 \mathrm{~cm}^{3}$ pipette to place $10.0 \mathrm{~cm}^{3}$ of FB 1 into the same conical flask.

- Add a few drops of bromophenol blue indicator.
- Titrate the contents of the conical flask with FB 3 from the burette.
- Perform a rough titration and record your burette readings in the space below.

The rough titre is \qquad cm^{3}.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of FB 3 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

(b) From your titration results, obtain a suitable value to be used in your calculations. Show clearly how you obtained this value.

$$
\text { volume of FB } 3 \text { used in titration = }
$$ cm^{3} [1]

(c) Calculations

(i) Give your answers to (c)(ii), (c)(iii) and (c)(iv) to an appropriate number of significant figures.
(ii) Calculate the number of moles of sodium hydroxide present in the volume of FB 3 calculated in (b).

$$
\text { moles of } \mathrm{NaOH}=
$$

\qquad mol

This number of moles of sodium hydroxide neutralises the remaining hydrochloric acid. Deduce the number of moles of remaining hydrochloric acid.
moles of remaining $\mathrm{HCl}=$ \qquad mol [1]
(iii) Calculate the initial number of moles of hydrochloric acid in each $25.0 \mathrm{~cm}^{3}$ sample of FB 2 pipetted into the conical flask.
initial moles of HCl in each sample of $\mathrm{FB} 2=$ mol

You have calculated

- the number of moles of remaining HCl
- the initial number of moles of HCl in each sample of FB 2.

Calculate the number of moles of hydrochloric acid neutralised by the $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \times \mathrm{H}_{2} \mathrm{O}$ in FB 1 in each titration.
(iv) Complete the equation. Include state symbols.
$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\ldots \ldots . \mathrm{HCl} \ldots . . \rightarrow$....................... + \qquad $+$ \qquad
Deduce the number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \times \mathrm{H}_{2} \mathrm{O}$ present in each $10.0 \mathrm{~cm}^{3}$ sample of FB 1.
number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \times \mathrm{H}_{2} \mathrm{O}$ present $=$ \qquad mol
(v) FB 1 contains $37.5 \mathrm{gdm}^{-3} \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$.

Use your answer to (c)(iv) to calculate the relative formula mass, M_{r}, of $\mathrm{Na}_{2} \mathrm{CO}_{3} \times \mathrm{xH}_{2} \mathrm{O}$. Show your working.
relative formula mass of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}=$
(vi) Determine the value of x in the formula $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$.

$$
\begin{equation*}
x= \tag{1}
\end{equation*}
$$

(d) A student suggested a different method.

- To $250 \mathrm{~cm}^{3}$ of FB 2, add $100 \mathrm{~cm}^{3}$ of FB 1 .
- Pipette $25.0 \mathrm{~cm}^{3}$ of this mixture of solutions into a conical flask.
- Titrate this mixture of solutions with FB 3.
- Repeat titrations until concordant results are achieved.

Comment on one disadvantage or one advantage of using this method rather than the method you used in (a).
\qquad
\qquad
\qquad

2 You will now investigate a different hydrated salt with the formula $\mathbf{M S O}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$, where \mathbf{M} is a Group 2 metal. By heating a sample of $\mathrm{MSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ to produce anhydrous MSO_{4} you will determine its relative formula mass and hence identify \mathbf{M}.

FB 4 is the hydrated salt $\mathrm{MSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.

(a) Method

- Weigh the crucible with its lid. Record the mass.
- Place between 1.80 g and 2.20 g of FB 4 in the crucible.
- Reweigh the crucible, its lid and contents and record the mass.
- Without the lid, place the crucible on the pipe-clay triangle and heat gently for approximately 1 minute and then strongly for approximately 4 minutes.
- Place the lid on the crucible and leave it to cool.
- You may wish to start Question 3 while you are waiting for the crucible to cool.
- Reweigh the crucible, its lid and contents and record the mass.
- Calculate, and record, the mass of FB 4, the mass of residue after heating and the mass of water lost.

(b) Calculations

(i) Calculate the number of moles of water lost when your sample of $\mathrm{MSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ was heated.
moles of water =
\qquad mol [1]
(ii) Write the equation for the reaction that occurs when $\mathrm{MSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ is heated. Include state symbols.

Deduce the number of moles of anhydrous salt, $\mathbf{M S O}_{4}$, left after the heating.
(iii) Calculate the relative formula mass, M_{r}, of $\mathrm{MSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.
(iv) Determine the relative atomic mass, A_{r}, of \mathbf{M} and hence identify \mathbf{M}. Show your working.
$A_{\mathrm{r}}=$ \qquad \mathbf{M} is \qquad
(c) (i) In the method used above, the lid was placed on the crucible when the crucible was left to cool.

Explain why the lid was placed on the crucible.
\qquad
\qquad
(ii) Suggest and explain the effect on the calculated value of the relative atomic mass of \mathbf{M} if the lid had not been placed on the crucible during cooling.
\qquad

Qualitative Analysis

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen
- the formation of any precipitate and its solubility in an excess of the reagent added
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.
If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

3 In this question you may need Tollens' reagent. To prepare this, place a $2-3 \mathrm{~cm}$ depth of aqueous silver nitrate in a test-tube, add aqueous sodium hydroxide drop by drop until a small amount of brown precipitate is formed and then add aqueous ammonia drop by drop with shaking until the precipitate just dissolves. This is Tollens' reagent. If Tollens' reagent is used, ensure that all test-tubes are thoroughly rinsed immediately after use.

Half fill the $250 \mathrm{~cm}^{3}$ beaker with water and heat to boiling. Then turn off the Bunsen burner. This will be used as a hot water bath.
(a) (i) You are to investigate some reactions of solid FB 5.

To a 2 cm depth of aqueous ammonium vanadate(V) in a test-tube add a small spatula measure of FB 5. Leave for approximately 4 minutes with occasional shaking.

Record all the changes that you observe.
Keep the test-tube and its contents for use in the next test.
\qquad
\qquad
\qquad
\qquad
(ii) Transfer a 1 cm depth of the solution from (a)(i) into a test-tube and add acidified potassium manganate(VII) a few drops at a time until no further reaction occurs. At this stage the solution is pink because unreacted KMnO_{4} is present.

Record all the changes that you observe.
\qquad
\qquad
\qquad
(iii) State the type of reaction occurring in the test in (a)(ii).
\qquad
(iv) To a 1 cm depth of dilute sulfuric acid in a test-tube add a small spatula measure of FB 5. Record your observations. Place the test-tube in the hot water bath if necessary to start the reaction.
\qquad
\qquad
(b) FB 6 is an aqueous solution that has been made by reacting solid FB 5 with dilute sulfuric acid.
(i) Carry out the following tests and record your observations.

test	observations
Test 1 To a 1 cm depth of FB 6 in a test-tube add aqueous sodium hydroxide.	
Test 2 To a 1 cm depth of FB 6 in a test-tube add aqueous ammonia.	

(ii) Identify FB 5 .

FB 5 is \qquad . .
(iii) Give the equation for the reaction of FB 5 with sulfuric acid to make FB 6. Include state symbols.
\qquad
(c) FB 7 is either ethanal, $\mathrm{CH}_{3} \mathrm{CHO}$, or propanone, $\mathrm{CH}_{3} \mathrm{COCH}_{3}$.
(i) Describe a test that would enable you to identify which of these compounds is present in FB 7. You should state the observation expected for ethanal and propanone.
test \qquad
\qquad
expected observations
ethanal \qquad
propanone
(ii) Carry out this test on FB 7. Record the result of the test and hence identify FB 7. result \qquad
FB 7 is
[Total: 13]

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al}{ }^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
$\begin{aligned} & \text { zinc, } \\ & \mathrm{Zn}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ ((partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, I-(aq)	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}{ }^{2-(\mathrm{aq})}$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

	$\stackrel{\square}{\circ}$
	은 튼
	\％
	®U镸
	毋 ¢ ¢ 高
	I
$\bar{\circ} \mathrm{E} \text { ¢ }$	® 은 言
\＆	๙ つ
	बの
	ヵ ᄃ

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cambridgeinternational．org after the live examination series．

